翻訳と辞書
Words near each other
・ Hauschka
・ Hauschka (disambiguation)
・ Hausdalshorga
・ Hausdorff
・ Hausdorff Center for Mathematics
・ Hausdorff completion
・ Hausdorff density
・ Hausdorff dimension
・ Hausdorff distance
・ Hausdorff gap
・ Hausdorff maximal principle
・ Hausdorff measure
・ Hausdorff moment problem
・ Hausdorff paradox
・ Hausdorff space
Hausdorff–Young inequality
・ Hause
・ Hause House
・ Hausei River
・ Hausel
・ Hausen
・ Hausen (crater)
・ Hausen (Frankfurt am Main)
・ Hausen (Wied)
・ Hausen am Albis
・ Hausen am Bussen
・ Hausen am Tann
・ Hausen bei Brugg
・ Hausen bei Würzburg
・ Hausen im Wiesental


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hausdorff–Young inequality : ウィキペディア英語版
Hausdorff–Young inequality
In mathematics, the Hausdorff−Young inequality bounds the ''L''''q''-norm of the Fourier coefficients of a periodic function for ''q'' ≥ 2. proved the inequality for some special values of ''q'', and proved it in general. More generally the inequality also applies to the Fourier transform of a function on a locally compact group, such as R''n'', and in this case and gave a sharper form of it called the Babenko–Beckner inequality.
We consider the Fourier operator, namely let ''T'' be the operator that takes a function f on the unit circle and outputs
the sequence of its Fourier coefficients
: \widehat(n)=\frac\int_0^e^f(x)\,dx,\quad n=0,\pm1,\pm2,\dots.
Parseval's theorem shows that ''T'' is bounded from L^2 to \ell^2 with norm 1. On the other hand, clearly,
:|(Tf)(n)|=|\widehat(n)|=\left|\frac\int_0^e^f(t)\,dt\right|\leq \frac \int_0^|f(t)|\,dt
so ''T'' is bounded from L^1 to \ell^\infty with norm 1. Therefore we may invoke the Riesz–Thorin theorem to get, for any 1 < ''p'' < 2 that ''T'', as an operator from L^p to \ell^q, is bounded with norm 1, where
:\frac+\frac=1.
In a short formula, this says that
:\left(\sum_^\infty |\widehat(n)|^q\right)^\leq
\left( \frac\int_0^|f(t)|^p\,dt\right)^.
This is the well known Hausdorff–Young inequality. For ''p'' > 2 the natural extrapolation of this inequality fails, and the fact that a function belongs to L^p, does not give any additional information on the order of growth of its Fourier series beyond the fact that it is in \ell^2.
==Optimal estimates==
The constant involved in the Hausdorff–Young inequality can be made optimal by using careful estimates from the theory of harmonic analysis. If f\in L^p for 1, the optimal bound is
:\|\hat\|_\leq p^q^\|f\|_
where q=p/(p-1) is the Hölder conjugate of p

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hausdorff–Young inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.